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ABSTRACT 

We shall prove some unconnected theorems: (1) (G.C.H.) 
0)~+1 ~ (0)`` + ~)~ when N`` is regular, [~1+< 0),,. (2)There  
is a Jonsson algebra in N,+,, and N,+,-~[N,+,]~++I, if  
2~ = N~+,. (3) I f  ~,> N O is a strong limit cardinal, then 
among the graphs with < 2 vertices each of valence < 2 there 
is a universal one. (4) (G.C.H.) I f  f is a set mapping on o9~+ 1 
(N, r e g u l a r ) I f ( x ) n f ( y ) [  < N,, then there is a free subset of 
order-type ~ for every ~ < 0)~+1. 

1. Introduction 

We shall solve here some infinite combinatorial problems, most of which 

appeared in Erd6s and Hajnal [3, 4]. The definitions appear in the appropriate 

sections, and the background in the introduction. Two of the results appeared in 

my notice [-15]. 

Section 2 solves as a particular case a problem of Hajnal [6] which is Problem 

36 of [3]. We prove (G.C.H.) that if f is a set mapping on 0),+1, N, is regular, and 

x r y~0)~+1 ~ If(x) n f ( Y ) l  < ~ ,  then for every ~ < 0)~+1, ~o~+1 has a free 

subset of order-type r Hajnal's question was for ~ = 0 (and then G.C.H. is not 

needed) and its solution follows from the strong theorem 0)t _~(~)2 (n < 0), 

< 0)1) of Baumgartner and Hajnal [1], but this does not imply our general 

result. In [4] another generalization of Problem 36 of [3], due to Prikry, is 

mentioned : 

THEOREM (Prikry). Let [o)1] 2 =  I o W I1, Io N I l  = ~ .  I f  there are no sets 
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A , B  c o91 such that ]A[ = No, ]B] = N1 and A |  B c_ Io, then for  every ~t < o9, 

there is a set C of type ~ such that [C] 2 c 11. 

In w we shall prove that for every strong limit singular cardinal 2 > N o (that is 

/~ < 2 ~ 2"< ).), in Kx there is a universal graph. (Kx is the set of graphs with 2 

vertices such that the valency of each vertex is < 2. A graph G is universal in Ka if 

G ~ Kx, and every graph in Ka is isomorphic to a subgraph of G spanned by its 

set of vertices.) This solves Problem 74 (from [3]) of Erd6s and Rado. Rado in 

[12, 13] proved (G.C.H.) that for every regular N, > No, Ks has a universal graph. 

He also proved (G.C.H.) that for regular N, > No, K ' s  has a universal graph, 

where K'~. is the set of graphs with =< N, vertices. De Bruin proved Kso does not 

have a universal graph. Rotman [14] discusses the connection between Rado's 

theorem, and general model-theoretic theorems of Jonsson [8] and Morley and 

Vaught [10] on the existence of universal (and homogeneous) models. Together 

with Rado's theorem, our result implies that (G.C.H.) for every e > 0, Ks, has a 

universal graph. 

We ask another natural question: is there a strongly universal graph, in the 

sense that the embedding of each G* ~ Ka into it, preserves valency? We answer 

this positively if 2 = N~ > I ~1 + No and G.C.H. holds. If N~ = ~, the answer is 

negative. 

It remains an open question whether No + ]el < N, and G.C.H. are needed. 

Similar questions remain open for the existence of a universal graph in Kx and 

K;. 
n §  

In w we prove that if 2 e < N,+, then N,+,-~ [N,+,]g,+, and there is a 

Jonsson algebra of cardinality N~+,. (I first proved this using the stronger 

assumption that 2 e = N,+,, and Galvin observed that the same proof works if 

one assumes only that 2 ~" _< N,+,.) This generalizes the theorem of Erd6s and 
2 Hajnal [5] that 2~ '=  N~+ 1 implies N~+ 1 ~ [N~+ 1]~,+~ and the theorem of Erd6s 

and Hajnal [2] and Chang that then there is a Jonsson algebra in N,+ 1. 

In w we prove a combinatorial lemma which will be used in w and hopefully 

it will have further application. Its intuitive meaning is that for suitable colorings 

of o9~+ 1, there is a subset of the same cardinality in which appear only the colors 

appearing "heavily" in o9, + 1. 

In w we prove (G.C.H.) that if N~ is regular, [ 41 + < N~, then rn~+ i -* (a~ + ~)~. 

This generalizes an unpublished result of Erd6s and Hajnal: o92 ~ (co I + n)Zz 

(see [-4, Problem 10]). It should be noted that Hajnal, by a slight generalization of 
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Prikry [11] proved, in fact, that ZFC + GCH is consistent with o9z ~(o91 + o9)2 

and even o92 . [o9~ +o9]~,. It remains an open question whether o92 ~ (o91 + 2)~. 

NOTATION. The cardinality of a set A is I A I and the order type of (A, <)  is 

denoted by tp(A, <)  or simply by tpA if the order relation is understood. We 

identify an ordinal with the set of smaller ordinals, the 0c'th infinite cardinal is 

N~, and the corresponding initial ordinal is o9~. Ordinals will be i,j, k, l, ~t, fl, 7, 6, ~, 

(5 a limit ordinal), cardinals will be 2,/~, x, and natural numbers will be m, n. Let 

2a= ~k<u2 k. Sets will be denoted by A,B ,S ,X ,  Y,Z and elements of sets (which 

are frequently ordinals) are denoted by a, b, v, x, y. [A]" is the set of all subsets of 

A with exactly n elements. If  A, B, c__ S, x e S, S is ordered by <,  then A < B 

means y e A ,  z e B ~  y < z ;  A < x  means y e A ~  y < x ,  etc. 

2. The existence of free subsets 

DEFINITION 2.1. A) A function f is a set mapping (of type 1) on a set S if its 

domain is S, and for any a e S, f(a) ~_ S, a el(a) .  

B) A subset S, of S is free (for f )  if for any distinct a, b e S 1, a r 

THEOREM 2.1. I f  f is a set mapping on 2 +, 2 = 2 ~, and for any distinct 

x , y e 2  + If(x) n f ( y )  I < 2, then for any ordinal ~ < #+, 2 + has a free subset of 

order type 4. 

PROOF. If there is x e 2  +, [f(x)l = 2 +, then ( f (x) ,  < )  satisfies: tp ( f (x ) ,  < )  

= 2 +, and for y ef(x),  ]f(y) n f ( x )  I < 2, hence by Hajnal [7] there is S ~_f(x), 

tp (S, < ) = 2 +, such that for any y e S, [ f (y)  n f ( x ) ]  n S = Z;, hence f(y) ~ S 

= f ( y )  ~ ( f ( x )  n S) = I f (y )  Nf(x)]  n S = ~ .  So S is a free subset of  2 + of 

order-type 2 +, and we get more than we want. Hence w.l.o.g. 

(1) If(x) l < 2 for any x e 2  +. 

Let us define a function F1:2  + ~ 2  +, by F l (x) -=supu~<x f(y). (As 

U~<x f ( Y ) l < 2 " 2 < 2 + ,  clearly F~(x)e2 + for xe2+.) Let S l = { x : y < x  

implies FI(y) < x}. Clearly t p S l = 2  + and for xeS~,  [f(x) n S ~ ]  __q {y: y < x, 

y e $1}, so w.l.o.g. $1 = 4 +, and 

(2) f(x) __c_ x = {y: y < x} for any x e 2  +. 

For any sequence )7= (y~: i < io) (y~e2+), define 

C0 7) = {z: (Vi < io) [y, < z A yi(sf(z)]}. 

Now define another function F2:4  +--* 2 + such that F2(x) is the least element 
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satisfying the following: For any io </~, and sequence 9 = (Yi: i < io), Yi < x, the 

following holds: 

A) If I C(Y)I < 2+ then C(y) < F2(x) [that is z ~ C(p) -~ z < F2(x)]. 

B) If] C(.9) ] = 2 +, then I {z: x < z < Fz(x) ,  z E C(fi)} [ = 2. 

C) I f x l < x , i  l < # , 5 = ( z i : i < i l )  and 

[ C ( ) 7 ) ~ { v : x x = < v < x } ] ~  k) f ( z i )  
i<il 

then there is such a 5 for which x < 5 < Fzi(x). 

As ). = 2 ~, the number of such )7's is =< 2, hence F2(x ) < 2 +. Let Sz = {y: z <  y 

implies Fz(z  ) < y}. Clearly the cardinality of $2 is 2 + (in fact it is a closed un- 

bounded subset of 2+). Let ~ be an ordinal ~ < #+ ; w.l.o.g. ~ >= p. Order the 

elements of ~ + 1 in a sequence of length p,~ being the first: {~: a < 4} = {ai: 
i < p}, ao = 4. Choose an increasing sequence of elements of $2 of length ~ + 2 

{xp: fl < ~ + 2}. Now we shall define Yi by induction on i such that: 

i) x~,, <= Yi < x~,,+1 

ii) i f j  < i then yj Cf(y~), y~ Cf(yj) .  

There is no problem in defining Yo- Suppose # > i > 0, and we have defined y~ 

for j < i. By (2) it suffices that the y~ will satisfy 

I) x~, < Yi < x~+ l, 

II) j < i, a t < 0q --* yj  Cf(y , )  

III) j < i, 0 9 > ai ~ Yi q~f(Yj). 

If no such y~ exists then 

(3) [C t"3 {v: x,, ~ v < x , ,+ ,}]  ~ k.) { f (YJ) :J  < i, o~j > oh} 

where C = C((y j :  j < i, aj < ei)). 

As x,,+ 1 e $2, F2(x,,) < x,,+ 1 and even F2(F2(x,,)) < x,,+,. 

Hence 

[C ~ {v: x,. < v < F2(x,,)} ] ~_ u {f(Yi): .]  < i, o~ 1 > oh}. 

As Yo e C by the induction hypothesis (ii), and Fz(X,,) < x,,+, < x,o < Yo, clearly 

condition (A) of the definition of Fz implies ] C I = 2 +, hence condition (B) of  

the definition of F2 implies 

(4) ] C n {v: x,, < v < F2(x,,)} I = 2. 

So from condition (C) of the definition of FE, and from (3) it follows that there 

is ( y * : j  < i, ej > ei) such that F2(x,,) _N y* < F2(Fz(x,,))  < x, ,+l and 
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(5) [C ~ {v: x,, < v < F2(x~,)) ] ~ U { f ( y * ) : j  < i, otj > c~i}. 

From (3), (4) and (5), remembering i < # and cf()`) > # because )̀ ~ = 2, it follows 

that there are j,  k, j < i, ctj > ~i, k < i, c~ k > cti, such that 

(6) If(Y J) c3f(Y*)l --- )`' 

But yff < x,,+l < x,a < yj so yj # y*, hence (6) contradicts the theorem's 

hypothesis. 

Thus, we can define Yi as needed. By condition (ii) of the inductive definition 

(of yi) it follows that {Yi: i </~) is a free subset of),  +, and by condition (i) of that 

definition it follows that tp(y~: i < #} = tp(x~: fl < ~ + 1} = ~ + 1. Thus the 

theorem is proved. 

REMARK. We could have weakened the hypothesis of the theorem to: 

(*),P: for every distinct ya, ..., y, ~ )`+, tp[n~,=Lf(ym)] < p for any p < 2 + = R1 

and n < o~; another weakening is (**)~ for every distinct yi i < ~c, l t")i<,J(Yi)l < )` 

for any lc which satisfies Nr < # =~ N~ < of()`). The proof is essentially the same. 

3. On the existence of universal graphs 

The term "graph"  will mean here an undirected graph with no loop and no 

multiple edges (but the result can be generalized straightforwardly for those cases). 

A graph G is an ordered pair (V,E>, where V is the set of vertices and E ~ [V] 2 

is the set of edges. Here Gi=(Vi,Ei> etc. The valency of a ~ V  is v(a,G) 

= ] (b: b E V, (b,a) ~E} I" A function f i s  an embedding of G1 in GE if)": V1 ~ Vz 

is a one-to-one function, and for a, b ~ V1, (a, b) ~ E 1 iff ( f (a) , f (b))  ~ E 2. G 1 is a 

(spanned) subgraph of G2 if the identity function on V1 is an embedding. G1 is 

embeddable in G2 if there is an embedding f o f  G1 in Gz (that is, if G1 is isomorphic 

to a subgraph of G2). For a cardinal ). let K~ be the class of graphs G such that 

I VI < 2 and for a ~ V, v(a, G) < )`. G ~ Ka is universal in K~ if any Ga c K~ is 

embeddable in G. Clearly, if )  ̀> No is regular, then every component of a graph 

G ~ Kx is of cardinality < 2. By this, Rado proved that if 2 > No is regular, 

# < 2 ~ 2 ~ __< )`, then Kx has a universal graph. The following theorem shows this 

is sufficient also for singular 2. 

THEOREM 3.1. I f  2 > N O is a strong limit singular cardinal (i.e. # < ,~--, 2" 

< 2) then in K~ there is a universal graph. 

REMARK. For example 2 = ~1,o satisfies the conditions. 
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PROOF. As 2 is singular, let 2 = ]~<~ /~i, where #i < 2, x < 2, and w.l.o.g 
/ / 1  ~ 2 </~i+ 1, for a limit ordinal 5 < x, Pa ]~ <a Pi. Denote pIT] --kti. We shal. 

define an increasing sequence of graphs G i and functions fi for i < ~: such that : 

1) i f j  < i then Gj is a subgraph of G~ 

2) fi: Vi -~ x, and for j < i, fi extends f i  

3) for a limit ordinal 5 < x, V~ = ui< ~ V/, E~ = ui<~Ei,f ~ = w~<~fi 
4) ] V~[ =/1,  

5) if i > j > k +  3, a~Vj, f~(a)=k, then {b:beV~, ( a , b ) ~ E i } = { b : b e V  j, 
(a, b) e Ey} 

6) for a n y j  < i, any graph G, V= {xl: l </ l j+t} ,  any function f from Vinto 

x such that v(xz, G) < #Ef(xz)] and any embedding g into Gi of the subgraph of 

G spanned by {xz: l < #j} or the empty set such that for any a in the domain of g, 

(Dom, 9 ) , f ( a )=f i (9 (a ) )  and f ( a ) < j  ( a , b ) e E ~ b ~ D o m 9 ,  there exists an 

extension 9' of 0 which is an embedding of G into Gi+ 1 such thatf(xt)  =fi+ t(O'(xt)) 
for l </~j+ 1. 

We define Gi, fi inductively. G O will be any graph of power #o, Jo any function 

from Vo into x. For a limit ordinal 5, V~ = uj<~Vj, E~ = Wj<~Ej,f~=u~<ffij 
Suppose Gi, fi have been defined, and we shall define Gi+ 1, fi+x. The number of 

triples (G,g,f> such that for some j < i: 

a) V=  {xl:l < /.,ti+l} 

b) f is a function from V into re, such that v(xt, G) < p[f(xt)  ] 

c) 9 is an embedding of the subgraph of G spanned by {x,: l < pj} or the 

empty set, such that for any a E Domg,  f(a)=f/(g(a)), and (a, b)e E, f ( a ) < j  
b e D o m g  

is < s 1) < 2" '<  &+,. 

Let {(G ~, 9=,.U> : ~ < &+ ,} be a list of all such triples (possibly with repetitions), 

and G ~ = {xl: 1 < #k(~)}" 
Let I1/+ 1 = Vi u { ( i  + 1, ~, l>: ~ < / ~  + 1, 1</4( , ) ,  x t is not in the domain of  9"}, 

Ei+, = E~ U {(a,<i + 1,c~,l>): a e V~, <i + 1 ,e , l )  e ~+1, for some 1' a = g=(xr) 
and (xt ,xr)eE ~'} U {((i + l, ~, l), ( i+l ,o~ , l ' ) ) : ( i+l ,o~ , l ) ,  ( i + l , ~ , l ' )  

e ~+~, (x,,x~,) eel} ,  

fi+l(a) = I f i (a  ) aeVi, 

Lf'(xz) a = <i + 1, ~, l>. 

It is easy to check that all conditions are satisfied. Now I V~] = 2 by (3), (4) and if 
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a eV~ then a eV~ for some i; hence, letting k = max(i,f~(a))<x, we get by 

condition (5) 

v(a,G.) = I{b: be  V~, (a ,b)eEx} I == ]{b: be  Vk+4, (a,b)eEk+4}] 

=< I v +,l = < it. 

So G~ e Kz. We shall show that GK is universal, thus proving the theorem. Let 

(3* ~ K z. We can easily define an increasing sequence of subgraphs (3* such that 

A) I v  i* [ = , ,  

B) a ~ Vi*, (a, b) ~ E, v(a, (3*) < Izi implies b e Vi* 

C) if a ~ Vi*, v(a, (3*) > Pi then v(a, (3*) = ~ 

D) for a limit ordinal 6 < x, V* = wi<~V/* 

Let f :  V * ~ x  be such that #[f(a)]  >v(a,(3*). Now w.l.o.g. Vfl= {x~: l<  Pi} 

(otherwise replace G* by a suitable graph isomorphic to it). Now we can 

define by condition (6) an increasing sequence of embeddings 9~ of (3* into (3~+ 2 

such that i f a  e Vi* thenJi(g(a)) = f(a). Then clearly 0K = u <~9i is the required 

embedding. 

DEFINITION: A graph (3 is strongly universal in Kzif  (3 e K a and every G*~ K~ 

can be embedded into (3 by a valency-preserving g (that is, 9 : V* ~ V is an 

embedding, and v(a, (3*) = v(g(a), (3) for any a e (3*). 

THFOREM 3.2 (G.C.H.). I f  it is singular, it = N, > x = ] a[ + No, then in Ka 

there is a strongly universal graph. 

REMARKS. 

1) Instead of G.C.H., we can assume there is/~ < it such that for any x, # < x 

<i t ,  x + = 2  K. 

2) For regular it, assuming G.C.H., there is a strongly universal gralSh in 

Ka--Rado's  proof provides it in fact. We just have to take a graph G such that for 

a connected G*e Ka there are it components of G isomorphic to G*. 

PROOF. For any graph G* e Ka, we can find G* i < it such that: 

1) for j < i, (3* is a subgraph of G*, 

2) if 6 < 2 is a limit ordinal then U/<aV~* = Vo and G~' = G*, 

3) Iv,*l =lil + ~  and if a~V~*, b~V* ,  ( a , b ) e E  and v(a,G*)<] V~*], then 
b e E * ,  

4) If a �9 V~*, v(a, G*) > I V* ] then v(a, G,*) = 1 Vi*]" 

This can be done easily. The only difficulty is in condition (3) for a limit ordinal i. 
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For each a ~ V*, let C(a, G*) = {b: b e V*, (a, b)e  E*}, let <a be a well ordering 

of C(a, G*) of order-type I C(a, G*)], and when defining inductively G*, demand 

in addition to (1)-(4) 

5) if a ~ I,~*, the first I v,*l members of C(a, G*) belong to V/* (first by <a). 

NOW we can define inductively G i, f~ for i < )~ such that 

A) for j < i, Gj is a subgraph of G i, fi: V/-~ ~ and f~ extends f j ,  

B) if ~ < 2 is a limit ordinal then ~3i<~ V / -- V6, and G = L)i<aGi, 

c) Iv, I =lil  
D) for a e  Vj, j < i, Sy~(,)<l Vj] i fffor  no be  V~ - Vj (a ,b)eEi ,  

E) if a ~ V~, N:,fa) < l V~I, then v(a, Gi) = N;:,(a), 

F) if G* is a graph, IV* I =~;, f * :  V*~tc  and for a e  V*, v(a,G*) =ra in  

[~c, Ny.(a)], then there is a j < ~:+ and an embedding g of G* into Gj such that for 

a e V* fj(g(a)) =f*(a ) ,  

G) Suppose G* is a subgraph of G2*, f* :  V2* ~ ic; for a e V2*, v(a, G*) = rain 

[]V*[, N:.(,)], for any a sG'~ v(a,G*)=v(a,G*) and N:.( , )<]V~'[  implies 

(u e V~') [(a, b) e E~' ~ b e V*]. Suppose in addition that i < ;t, [ V*] = ] V*] 

= [i[ + K, g~ is an embedding of G* into Gi, and for any a ~ V~*,fi(ol(a)) = f* (a ) .  

Then there is j, i < j < (I i[ + ~c) +, and an extension g2 of gl which is an embedding 

of G~ into Gj, and for any a e V*, fy(g2(a)) =f*(a) .  

This is possible because for each i, (F) and (G) produce 2 Ii1+~ =( [ i1  +~)+ 

demands, which we scattered among the j + 1 <([ il + so defining Gj+I, 

fj+~, we have < IJ[ + K demands for extending embeddings. Now given a G*, as 

mentioned before, we can define G* satisfying (1)-(4), and let f : V* ~ tc be such 

that v(a, G*)= Nf(,). Then by (F), we embed G*, and by (G), we extend the 

embedding inductively. 

THEOREM 3.3. I f  N, = ~, N, singular then there is no strongly universal 

graph in K ~ .  

PROOF. Suppose G is such a graph. Let ~c be the cofinality of N,, N, = Ei<~:-i, 

2 i < N,. Let {xi: i < io < N,} be the set of vertices of G of valency to. Fol i < to, let 

Si = {v(y, G): there is j < ).i such that (y, x j) e E}. As v(xi, G) = ~:, for each j there 

are ic y's for which (y, xi) ~ E. Hence [ S~I < ~:" 2j < N,. Choose a cardinal Pi < N,, 

Pir S~. Define a graph G*" 

V* = {x} k.) {y j : j  < lr k.) {zj,i: j < g, i < ktj} 

E* = {(x,yj):j < g} k.J {(yy, zj.i): j < to, i < l.tj}. 
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Suppose g is a strong embedding of G* into G. Then v(g(x), G) = x, hence there is 

k < io such that g(x) = Xk. Let k </1j, then (9(y j), Xk) ~ E, so v(g(y~), G) ~ Sj. But 

v(yj, G*) =/aj r Sj, a contradiction. 

REMARK. Another universal graph which exists is as follows. Let T be a set 

of finite graphs, K r be the class of graphs G, such that every finite spanned- 

subgraph of G is isomorphic to a member of K. Then (G.C.H.) for N~ > b~p > No, 

among the graphs in KT of cardinality < N~ and chromatic number < Np, there 

is a universal one. 

4. On the existence of Jonsson algebras 

An algebra, here always with countably many functions, is a Jonsson algebra 

if every proper subalgebra has a smaller cardinality. 

For cardinals 2,/2, x and natural number n, 2--* [#in means that for every 

function f :  [2]"--. x there is S ~ 2 and i o < x such that IS I = # and for no 

distinct a l , . . . , a ,  ES , f ( a l , . . . , a , ) =  io. The negation of this statement is 

2 -~[#]  n. As mentioned in Erd6s and Hajnal [2], /1~[2] ]  implies there is a 

Jonsson algebra of cardinality/l O f f  is a function for which the definition fails 

then (/1,f) is the desired algebra). 

THEOREM 4.1. I f  2 ~" __< N,+, then there is a Jonsson algebra of cardinality, 

~ot + n. 

By the last remark it suffices to prove 

: Nb _,,~._> F1~' I n + l  THEOREM 4.2. I f 2  ~ < N~+. then ,,,+, L"~+,3~,+,. 

Proof. We shall define by induction on m __< n functions F m with m places, 

with domain N~+,, and range the family of subsets of N~+, of cardinality < 

N~+n_ m. For m = 0, F,,( ) = N~+,. 

Suppose m < n and F m has been defined. Then for every a~, " ' , am Eba+ n, 

choose a well ordering <a(d = ( a l , - " ,  a,,>) of F(al, ..., am) of order type [F(a 1, 

�9 . . ,ara)[.  Now define 

I 
{x: x~F(a) ,  x <~ am+l} if am+leF(d)  

Fm+l(al,  . . . , a m + l )  : -  where d = (al ,  "",am), 

otherwise. 

LEMMA 4.3. I f  A ~ N ~ + , ,  IAI = N ~ + n ,  n ~ N ~ t + n ,  IBI then there are 

al, . . . ,a,  e A such that B ~ F,(a 1, . . . ,a,) and ] F,(a~,-.-,a,)] = N~. 

PROOF OF THE LEMMA. Define by induction on m, elements am such that 
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1) amEA 

2) B ~ Fm(al,'",am) 

3) N~+n-m = ] tm(al ," ' ,am)l  : ] A t'h f m(ai,...,am) 1. 
Suppose we have defined a t for l < m and 0 < in < n, and the induction con- 

ditions are satisfied (for m = 0, (2) and (3) are satisfied by the assumptions of the 

lemma and definition of Fo). We shall define am+l. Let d = (ai ,  "",am). Since 

B c Fm(d), I B I = ~.  < N~+._ m = [ Fro(a)] and <n is a well ordering of Fm(d ) of 

order-type N,+n-m which, as a successor cardinal, is regular, it is clear that B is 

bounded in Fro(d) by the order <~, by an element we shall call bl. Similarly, as 

] A n Fm(d) ] = N~+n-m, there is a b2 E Fro(d), bl <ab2, such that] A n {b: b ~ f, .(a),  

b <.62}1 = ~r Choose a,,+l as any element of F,,(d) n A which is bigger 

(by <n) than b2. (There exists one since 1 v~(a) l -- I Fm('~) n A I = ~=+.-m,  < .  has 
order type r and A is unbounded in Fro(d)). Clearly a,,+a satisfies the 

induction conditions. 
N~ Let us return to the proof of the theorem. By our assumptions, N,+, = N,+,, 

hence the number of subsets of N,+n of cardinality N~ is N,+,. Let 

{B,:i < r = {B: B___ N~+., [B l = ~ . } .  

Now the following observation is well known (it is proved using 2 ~ = ~,). 

~*) For an infinite cardinality N,, a set A of cardinality N~, and a family 

{ A , : i r  of subsets of A, IA,I I / I - -~= ,  we can find Bic_al,  IB, I - - ~ ,  

i # j  ~ B~ n Bj = ~ .  Hence we can find a function o f f :  A ~ A, such that for 

any i ~ I,  {f(a): a ~ Ai} = A. 

For any d=<al, . . . ,a , ,>,  ai~N~,, IF.(a)l = ~ , ,  we can define a one-place 

function fn: F,(a) ~ F,(~) such that if i z F,(a), B~ ___ F,(d) (or even I B~ n F,(a) ] 

= N,) then {fn(b): b ~ B,} = F,(d). If ] Vo(a) l < ~=, define f~ arbitrarily. Now we 

define the function g which will show the truth of Theorem 4.2: 

g(ai , ." ,a, ,a, ,+l)  = f<~,, ...,~,>(a,+ i). 

We should show that for any A ___ N,+,, IAI : ~=+., {g(~l, . . . ,ao+,):  a i~a}  

=N~+,. Let x~N~+~, and we shall find a l , ' " , a , + l ~ A ,  g ( a l , ' " , a , + l ) = x .  

Choose a subset A* of A of cardinality N~; thus, by the definition of the B~'s there 

is i < oJ,+, such that A* = By Let B = B, u {i,x}; clearly I B I = N, and B = N,+,,, 

hence by Lemma 4.2, there are a l , . . . , a , ~ A  such that IF.(a)] = ~,,  B =_F.(a) 
where d = ( a l , - " ,  a,>. 

By the definition offa ,  since i ~ F,,(a), B~ c__ B =_ F,,(a), x e B =__Fn(a), there is 
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a. + 1 e B i .~. A* c_ A such that fn(a,+ 1) = x; hence, #(al , . . . ,  a,,, a.+ 2) = fn(a, + 1) =X.  

Thus, the theorem is proved. 

5. A combinatorial lemma 

Here a colouring of S by x colours is a function C from [S] 2 into a set of 

cardinality x, which is w.l.o.g, x = {i: i < x). 

LEMMA 5.1. Let t p ( S ,  < )  = co~+2, Np > x p, N~ = Nff~and Np, p are regular. 

Assume in addition II1=< x and for each t e l ,  C t is a colouring of S by < x 

colours. Then there is a set $1 ~ S, ]$11 = N~+ 2 (hence tp(S0=co~+2) such that 

for  every J ~_ I, [ JI < IL, and al, a2 e $1, a3 e S, al < a2, there is an increasing 

sequence (bi: 0 < i < top) of elements of S, a 3 < b o which satisfies 

A) for  every t e J ,  i < j  ~ cop, C~(bi, bj) = Ct(al,a2) 

B) for  every t e l  and i < j < k < cop, C,(bi, bj) = Ct(b i, bk). 

REMARK 5.1. If S = o9~+2, then $1 is stationary. 

REMARK 5.2. Assuming G.C.H., ~ =fl, p = x +, the demand on the cardinals 

is "N~ regular, x + < N~". 

PROOF. Without loss of generality, S = co~+l; it is clear that x a < Np < N~. 

Define for any a e S, A ~_ S, T(a, A) = {(b, i, t): t ~ I, b E A, and i = Ct(a, b)}. Now 

for any a ~ S of cofinality = Np, any J ___ I, [ J] < # and any function g: J ~ x, 

consider the following condition: 

[*(a,J,g)] for any set A _ {b: b < a}, IAI < there is a 1, A < a 1 < a 

such that T ( a , A ) =  T(at,  A) and for any t e J ,  Ct(al, a ) =  g(t). 

If [*(a, J, g)] fails, let A(a, J, g) be a set contradicting it and if [*(a, J, g)] holds, 

let A(a, J ,g )  = ~ .  Let 

A(a) = u {A(a, J, 9): J ~ I, I J l < P, 9: J ~ x). 

From the assumptions on the cardinals it follows that [ A(a)] < Np. Hence for 

any a e S of cofinality > Np, A(a) is bounded below a, so choose j (a) ,  A(a) < f ( a )  

< a. Since S 1 = (a: a eco~+l, cf(a) > Np} is a stationary subset of co~+~ and 

f ( a ) < a  for a e S 2, by:a well-known result of Fodor  [ 1 6 I f  is constant over some 

stationary subset S 2 of S 2, and let f ( a )  = b o for any a e S 2. Since the number of  

subsets of {b: b < bo} of cardinality < Np is < Nff~= N~, the equivalence relation 

A(x) = A(y) partitions S 2 into N~ equivalence classes, so at least one of them 
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S a __ S 2 is stationary. Let A(a)= A o for a ~ S 3. Similarly there is a stationary 

$ 4 ~  S a such that T(a,Ao)= To for any a ~ S  4. 

Let a o be the first element of S 4 such that ao>A o an d  for any g: I ~  x, if there 

are b > a > a o such that for any t ~ I  Ct(a,b) = g(t) then there are such b,a 

with arbitrarily large a (since the number of functions 

g : I -~ r ,  is < t c lXl=~c~<N~=N~,  

there is such ao). Let St = {a : a ~ S 4, ao < a}. 

Let us show that $1 satisfies the conclusion of the theorem. Clearly ] $11 = N~+ ~. 

Now suppose al < a 2 ,  at ,a2~S1,  a3~S,  J~_I ,  [JI </ t .  Define g : J ~ x  by 

g(t) = Ct(al, a2). By the definition of $1 and ao, there are a l, a 2 ~ S 4, a o < a 1 < a 2, 

a 3 < a 1 < a 2 (hence al, a2~S1) such that for any tEI ,  Ct(al, a 2) = Ct(at,a2)" 

Clearly f ( a  x) = f ( a  2) = bo, A(a 1) = A(a 2) = Ao, T(a 1, Ao) = T(a 2, Ao) = To and 

A(a2, j ,g)  c A(a 2) = h o. But Ao < a t < a 2, T(al, Ao) = T(a2,Ao) and for each 

t~J ,  Ct(al, a 2) =g( t ) .  Hence by the definition of A(a2, j ,g)  the condition 

[*(a 2, J, g)] should hold. Define b,o, = a 2, and we now define hi, 0 < i < o~p by 

induction on i. If i < op and bj < a 2 is defined for each 0 < j < i, choose b~ as 

the first element satisfying B~ = [Ao u{a3} u { b j : j  < i}] < b~ < a 2, T(a2,B~) 

= T(bi, Bi) and for every t ~ J, Ct(b~, a 2) = g(t). This can be done as [*(a 2, J, g)] 

holds. It is easy to see that (b~: 0 < i __< ~%) satisfies the demands in the conclusion. 

REMARK 5.3. If a 3 < a2, by the proof  we can choose bo, B = a2. 

REMARK 5.4. By small changes, we can define a decreasing sequence of 

stationary subsets of 0~+ ~: S~ i <  % such that for i < j  the pair (S~,Sj) satisfies 

what the conclusion says on (S, S~). 

REMARK 5.5. It may be interesting to look at the following associated colouring 

of o~+ ~ : 

C(a,b) = {(gl,g2): gig2 are functions from I to x and for every A < a < b 

[A]<  Np there is a*, A < a* < a such that g~(t)= Ct(a*, a), g2(t) = C,(a*, b) 

we can and T ( a , A ) =  T(a*,A)}. 

REMARK 5.6. Extending the definition of [*(a, J, g)] to any J ___ I, if  2 2~__< N~ 

we can add to the conclusion of the lemma: 

C) for any a, b ~ S~ and any g: I ~  x, [*(a, I, g)] and [-*(b, I, g)] are equivalent. 

This is true because [ {9: 9: I ~ x}[ < 2 ~. We can add this to the construction 
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in Remark 5.4and in addition demand that for any a6S~+l, the set of 

(I, g) ( J _  I, ]J] < p, g : J  ~ ~) for which [*(a, J, g)] is satisfied relative to S, 

is independent of a and i. 

6. A partition theorem 

We shall deal here with an arbitrary 2-colouring of m~+l by two colours, 

which will be red ( = 0) and blue ( = 1). Instead of C(a, b) = O, we say (a, b) is red 

(by C) or C(a, b) is red. For simplicity we shall assume G.C.H. ~ ~ (fl): means 

that for any funct ionf :  [a]" ~ ~ there is A ~ a, tp(A) = fl, such that f i s  constant 

over 2. 

THEOREM 6.1. (G.C.H.) / fN~ is regular > No, [4] + < N~, then m~+ 1 

PROOF. Let N~ = ] 4[ +, so clearly N~ is a regular cardinal. Let C be a colouring 

of m~+l by red and blue (that is C: [o~+1] 2 -~ {0, 1}). A subset X of co~+ 1 is red 

(blue) if all the pairs from it are red (blue). By Lemma 5.1 we can assume w.l.o.g. 

that for any a er there is a red set A > a such that tp(A) = o~ + 1 (otherwise 

m, + 1 has a blue subset of order-type m~ + 1). Thus we can choose red sets X i ~_ ~ + 1, 

tp(X~)=~o~, for i < ~ + 1  such that X i < X j  for i < j < a ~ +  I. Let S = { X ~ :  

i < aJ~+l}, (the order < on S is already defined) and tp (S ,  < ) =  a~+~. Let 

X(k) be the k'th element of X. We define now several colourings of S: 

~) for any k, l < m~, Cka(Xi, Xj) = C(Xi(k),X~(1)) 

j" 0 if] {l: Cm(Xi, Xj) = 0}] = N~ 
C*(X~,Xj) 

1 otherwise 

~) C**(X i, X j) = sup {k: Ck.k(X i, X j) = 0}. 

Now by Lemma 5.1 we can define by induction on n a decreasing sequence of 

subsets S, of co~+1 of cardinality N~+~ such that S,+1 is related to Sn as $1 is 

related to S in the conclusion of 5.1 (where the colourings are the colourings listed 

above and N~, N~,, N~+ 1, N~ stand respectively for ~c,/z, Np, N~). The proof is now 

divided into three cases. 

Case I. In Sx, there are I11 < Y2 and l < ~% such that Cm(Y1, Y2) is red and 

tp {k: k < o~, CZ,k(Y1, Y2) is red} >_ 4. 

We choose an increasing sequence k(p) < to t for p <  ~ such that Cl,k(p)(Y1, Y2) 

is red. By the conclusion of Lemma 5.1 (with {Ct: t ~ J }  corresponding to 
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{Cl.,Ct.kO): P < 4}) there is an increasing sequence Zi, i < %, in S such that for 

any i < j  < o)~ and p < 4, Ct,z(Zi,Zi), Ct,kCp)(ZI,Zj) are red. It is easy to check that 

{z , (o :  i < w { z , d k ) :  k = k(p); p < 4} 

is a red subset of o~+t of  type o~ + 4. 

Case II.  Case I never happens and there are fl < o~ and Y1 < Y2 in $2 such 

that (i) Ca,a(Y~, Y2) is blue and (ii) C*(Y1, Y2) -'-= 0. 

Choose p 4 < P < ogr such that p - .  (p)21 (clearly there is such a p; in fact, 

p = 4"09 suffices (see [9])). Using again Lemma 5.1, we can find in $1 increasing 

sequences <yi: i < c%> and <zJ: j  < p> such that: 

1) yi  < z j for any i < og~, j < p 

2) for any i < j  < o),, Cp,a(Y i, YJ) is blue and C*(Y i, YJ) = 0 

3) for any i < j < p, Cp,p(Z i, Z j) is blue and C*(Zi, Z i) = 0 
i l  12 St i3 4) for any i I < i 2 < i 3 < p,  and k, l < co r, Ck, l (Z  , Z ) = Ck , l (Z  , Z ). 

We can define an equivalence relation ,-~ over {yi:  i < 09~} by yi ,,, y j  if for every 

k < p, Cp,p(Y i, Z k) -- C m ( Y  j, zR). Clearly there are < 2 I~ < N r < N~ equivalence 

classes, hence at least one of them has cardinality N~, hence w.l.o.g, there is only 

one equivalence class (otherwise we replace the Yi's by a subsequence of them). 

Using p ~ (p)~, we can similarly replace the Z j by a subsequence of the same 

length so that (w.l.o.g.) 

(A) for any i,j < co~, k , l  < p, Cp,a(Yi, Z k) = Ca,a(Y.i, Zt). 

If  Cp,p(Y ~ Z ~ is blue then clearly 

{ yi(fl): i < (o~} u {ZJ(fl): j < p} 

is a blue subset of o)~+ 1 of order-type o)~ + p > e)~ + 4, so we are finished. We can 

assume 

(B) for any i < o~, k < p, Ca,a(Y i,Z k) is red. 

As Case I never occurs and Yi, z k E s t ,  for every i < o ~ , j  < p, 

tp{k: k < or,  Ca,k(Yi, Z j) is red} < 4. 

Hence there is l(i,j) < o r such that l(i,j) =< k < a~ r implies Cp,k(Y i, Z j) is blue. 

Since N r is regular and p < or ,  we have that: l(i) = supj<pl(i,j) < o r As I is a 

function from t0~ into o~ < o ,  and o~ is regular, clearly by replacing (y i :  i < o,> 

again by a subsequence of the same length we get that I is constant, i.e. l(i) = l o. 

That is 
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(C) for any i < a~, j  < p and lo < k < cot, Cp,k(Y ~, Z J) is blue. 

Now we define by induction on j < p ordinals k(j) such that 

i) l o < k(j) < t.o r 
ii) if i < j then CktO,kU)(Z i, Z j) is blue 

iii) CkU).ku)(Z j, Z j+ 1) is red. 

It is easy to see by (C), (i), (ii) that if we succeed in the definition then 

{ yi(fl): i < o9~,} u {ZJ(k(j)): j < p} 

is a blue subset of o9~+ 1. Suppose we have defined k(i) for every i < j ,  a n d j  < p 

We shall define k(j). By condition (4) of the definition of the Y*'s and Z*'s and the 

induction hypothesis (iii), for any i <j ,  Ck,),ktO (Z i, Z j) is red. As Case I never 

happens and Z i, zJ~ $I, clearly tp R~ < r where 

R~ = {k: k < co r, Ck(i),k(Z i, Z j) is red}. 

As j < p < coy, ~ < coy, Nr is regular, clearly Rj is a bounded subset of coy, anp 

even W~<jRj U{/o} is a bounded subset of coy, say by I j. But by condition (3) 

from the definition of the Yi's and Zi's, C*(Z j ,Z j+a) __ 0, that is for Nr k's, 

CR,k(zJ, z j+ l) is red. So there is k(j), 1 j < k(j) < co r, CRU),k(j) (zJ, z j+ l) is red. This 

k(j) clearly satisfies the induction condition, hence we define the k(j)'s and so 
prove the theorem also in the second case. 

Case III. Case I and II never happen. 

We can find I(1 < Y2 in Sa such that Co.o(Y1, Y2) is blue (otherwise { Y(0): Y~ $3} 

is a red subset of ~%+ 1 of cardinality N,+ 1). As Case II never happened and 

$3 --- $2, clearly ko = C** (Y1, Y2) < 09r. Now we can proceed just as in Case II 

up to (C) with Sa instead of $2, and $2 instead of $1. In the definition of the 

Yi's and ZJ's in (2), (3), instead of C*(Y i, Y J)= O, C*(Z i, Z j) --0, we demand 

ko = C**(Y i, YJ), ko = C**(Z i, Z j) respectively. 

From this it will follow that for i < j < 097, /c o < k < coy, Ck,k(Z ~, Z j) is blue. 

By this and (C), clearly for every k < o~r, 1 o < k, ko < k 

{yi(o): i < o9,} U {ZJ(ko):j < p} 

is a blue subset of o9,+ x of order-type ~o, + p > o9, + ~, hence we prove the theorem 

also in the last case, 
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